Search results for " Metals and Alloys"
showing 10 items of 90 documents
Failure maps to assess bearing performances of glass composite laminates
2018
Aim of this article is the assessment of the bearing mechanical performances of pin-loaded glass laminates as function of their geometrical configuration. To this concern, 32 specimens having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under bearing conditions. The maximum bearing stress and the stress-displacement curves were analyzed as function both of hole to laminate free edge distance E and hole diameter D. Moreover, an experimental 2D failure map was created by placing the experimental results (i.e., the kind of failure mechanism occurred for each geometrical configuration) in the plane E/D versus W/D ratios. In…
Conf-VLKA: A structure-based revisitation of the Virtual Lock-and-key Approach
2016
In a previous work, we developed the in house Virtual Lock-and-Key Approach (VLKA) in order to evaluate target assignment starting from molecular descriptors calculated on known inhibitors used as an information source. This protocol was able to predict the correct biological target for the whole dataset with a good degree of reliability (80%), and proved experimentally, which was useful for the target fishing of unknown compounds. In this paper, we tried to remodel the previous in house developed VLKA in a more sophisticated one in order to evaluate the influence of 3D conformation of ligands on the accuracy of the prediction. We applied the same previous algorithm of scoring and ranking b…
A poly-L-lactic acid/ collagen/glycosaminoglycan matrix for tissue engineering applications
2017
Adhesion of tissue cells to biomaterials is a prerequisite of paramount importance for the effectiveness of a tissue engineering construct (cell and scaffolds). Functionalization of polymeric scaffolds with organic polymers, such as collagen or proteoglycans, is a promising approach in order to improve the cytocompatibility. As a matter of fact, organic polymers, isolated directly from the extracellular matrix, contain a multitude of surface ligand (fibronectin, laminin, vitronectin) and arginine–glycine–aspartic acid-containing peptides that promote cell adhesion. In tissue engineering, the combination of organic and synthetic polymers gives rise to scaffolds characterized simultaneously …
Optically Detected Magnetic Resonance of Chlorophyll Triplet States in Water-Soluble Chlorophyll Proteins from Lepidium virginicum: Evidence for Exci…
2018
Optically detected magnetic resonance of triplet states populated by photoexcitation in water-soluble chlorophyll proteins (WSCPs) from Lepidium virginicum has been performed using both absorption and fluorescence detection. Well resolved triplet-singlet (T-S) spectra have been obtained and interpreted in terms of electronic interactions among the four chlorophylls (Chls), forming two dimers in the WSCP tetramer. Localization of the triplet state on a single Chl leads to a redistribution of the oscillator strength in the remaining three Chls of the complex. By comparing the spectra with those obtained on a substoichiometric WSCP complex containing only 2 Chls per protein tetramer, we proved…
Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures
2016
We report on the comparison between the computational and experimental determination of electronic circular dichroism spectra of different guanine quadruplexes obtained from human telomeric sequences. In particular the difference between parallel, antiparallel, and hybrid structures is evidenced, as well as the induction of transitions between the polymorphs depending on the solution environment. Extensive molecular dynamics simulations (MD) are used to probe the conformational space of the different quadruplexes, and subsequently state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM) techniques coupled with excitonic semiempirical Hamiltonian are used to simulate the macromo…
Halogen bonding stabilizes a cis-azobenzene derivative in the solid state : A crystallographic study
2017
Crystals oftrans- andcis-isomers of a fluorinated azobenzene derivative have been prepared and characterized by single-crystal X-ray diffraction. The presence of F atoms on the aromatic core of the azobenzene increases the lifetime of the metastablecis-isomer, allowing single crystals of thecis-azobenzene to be grown. Structural analysis on thecis-azobenzene, complemented with density functional theory calculations, highlights the active role of the halogen-bond contact (N...I synthon) in promoting the stabilization of thecis-isomer. The presence of a long aliphatic chain on the azobenzene unit induces a phase segregation that stabilizes the molecular arrangement for both thetrans- andcis-i…
Characterization and properties of PEO coatings on 7075 Al alloy grown in alkaline silicate electrolyte containing KMnO 4 additive
2017
Abstract Plasma electrolytic oxidation (PEO) was used to modify the surface of 7075 Al alloy by applying a bipolar pulsed-current in a silicate based electrolyte containing 0 to 3 g L− 1 KMnO4. For the coating produced in the base electrolyte, crystalline γ-Al2O3 was the main phase, while the coatings formed at the presence of KMnO4 consisted of α-Mn2O3 containing Si and Al oxides. A pancake structure was observed on surface of the coating produced in the base electrolyte, while a foam feature along with some volcano-like areas was detected on the surface of the coatings produced in the presence of KMnO4. The KMnO4 changed the discharge type leading to diminish the pores at the metal/coatin…
The Amorphous Semiconductor Schottky Barrier Approach to Study the Electronic Properties of Anodic Films on Ti
2017
A detailed study of the electronic properties of thin (>20 nm) anodic TiO2 potentiostatically grown on titanium in two different solutions is presented. The results show that the nature of the anodizing solution affects the electronic properties of the anodic film and, more specifically, the density of electronic states (DOS) distribution. Different DOS were derived from the experimental data analyzed according to the theory of amorphous semiconductor (a-SC) Schottky barrier. It is shown that the usual non-linear and frequency dependent Mott-Schottky plots are in agreement with expected theoretical behavior of a-SC Schottky barrier.
Pluronic nanoparticles as anti-oxidant carriers for polymers
2016
Abstract The immobilization of anti-oxidant stabilizers for polymers, particularly naturally occurring systems, can be considered a valuable route for preventing their migration, volatilization, thermo-degradation and decomposition at typical high processing temperatures, as well as for enhance their solubility in polymers. In this work, an innovative approach for the immobilization of naturally occurring stabilizer, through the encapsulation in copolymer nanoparticles, is proposed. Pluronic nanoparticles (PNPs), based on PEO-PPO-PEO, (PEO: poly (ethylene oxide); PPO: poly(propylene oxide)), without and with quercetin, Q, have been successfully formulated and the critical micellar condition…
Polymeric micelles as a new generation of anti-oxidant carriers
2017
A promising strategy to immobilize a natural stabilizer in polymeric films is presented. Par-Ticularly, nevadensin (N, a natural basil flavonoid) molecules have been encapsulated in Pluronic F-127 micelles [F127, a triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] and the obtained nanoparticles have been introduced in poly(ethylene glycol), PEG [otherwise known as poly(ethylene oxide), PEO]. In order to verify the effectiveness of the micelles as anti-oxidant carriers, PEG-based films have been subjected to artificial weathering. The encapsulation of anti-oxidant molecules allows the enhancement of N solubility in PEG, leading to advanced materials with enh…