Search results for " Metals and Alloys"

showing 10 items of 90 documents

Failure maps to assess bearing performances of glass composite laminates

2018

Aim of this article is the assessment of the bearing mechanical performances of pin-loaded glass laminates as function of their geometrical configuration. To this concern, 32 specimens having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under bearing conditions. The maximum bearing stress and the stress-displacement curves were analyzed as function both of hole to laminate free edge distance E and hole diameter D. Moreover, an experimental 2D failure map was created by placing the experimental results (i.e., the kind of failure mechanism occurred for each geometrical configuration) in the plane E/D versus W/D ratios. In…

0209 industrial biotechnologyBearing (mechanical)Materials sciencePolymers and Plastics02 engineering and technologyGeneral ChemistryComposite laminates021001 nanoscience & nanotechnologylaw.inventionCeramics and Composites; Chemistry (all); Polymers and Plastics; Materials Chemistry Metals and Alloys020901 industrial engineering & automationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialilawMaterials ChemistryCeramics and CompositesComposite material0210 nano-technologyBearing failure modes mechanical joints glass fibre failure map
researchProduct

Conf-VLKA: A structure-based revisitation of the Virtual Lock-and-key Approach

2016

In a previous work, we developed the in house Virtual Lock-and-Key Approach (VLKA) in order to evaluate target assignment starting from molecular descriptors calculated on known inhibitors used as an information source. This protocol was able to predict the correct biological target for the whole dataset with a good degree of reliability (80%), and proved experimentally, which was useful for the target fishing of unknown compounds. In this paper, we tried to remodel the previous in house developed VLKA in a more sophisticated one in order to evaluate the influence of 3D conformation of ligands on the accuracy of the prediction. We applied the same previous algorithm of scoring and ranking b…

0301 basic medicineMaterials Chemistry2506 Metals and AlloysInhibitorStructure-basedComputer scienceProtein ConformationProtein Data Bank (RCSB PDB)Molecular ConformationTarget fishingMolecular Dynamics Simulationcomputer.software_genreLigands01 natural sciencesDockingVlka03 medical and health sciencesMolecular descriptorMaterials ChemistryHumansPhysical and Theoretical ChemistryCluster analysisDatabases ProteinSimulationSpectroscopyBinding SitesProteinscomputer.file_formatDescriptorProtein Data BankComputer Graphics and Computer-Aided Design0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyProtein–ligand dockingBiological targetDocking (molecular)Biological targetStructure basedLigand-basedData miningcomputerAlgorithmsSoftwareProtein Binding
researchProduct

A poly-L-lactic acid/ collagen/glycosaminoglycan matrix for tissue engineering applications

2017

Adhesion of tissue cells to biomaterials is a prerequisite of paramount importance for the effectiveness of a tissue engineering construct (cell and scaffolds). Functionalization of polymeric scaffolds with organic polymers, such as collagen or proteoglycans, is a promising approach in order to improve the cytocompatibility. As a matter of fact, organic polymers, isolated directly from the extracellular matrix, contain a multitude of surface ligand (fibronectin, laminin, vitronectin) and arginine–glycine–aspartic acid-containing peptides that promote cell adhesion. In tissue engineering, the combination of organic and synthetic polymers gives rise to scaffolds characterized simultaneously …

0301 basic medicineMaterials Chemistry2506 Metals and AlloysMaterials sciencePolymers and PlasticsBiocompatibilitypoly-L-lactic acid02 engineering and technologyMatrix (biology)Extracellular matrix03 medical and health sciencesTissue engineeringMaterials ChemistryglycosaminoglycanCell adhesionSettore ING-IND/24 - Principi Di Ingegneria ChimicaPolymers and PlasticPolymer sciencebiologyChemistry (all)General ChemistryAdhesion021001 nanoscience & nanotechnologyBiomaterialFibronectin030104 developmental biologySettore ING-IND/22 - Scienza E Tecnologia Dei Materialitissue engineeringBiophysicsbiology.proteinSurface modificationphase separation0210 nano-technology
researchProduct

Optically Detected Magnetic Resonance of Chlorophyll Triplet States in Water-Soluble Chlorophyll Proteins from Lepidium virginicum: Evidence for Exci…

2018

Optically detected magnetic resonance of triplet states populated by photoexcitation in water-soluble chlorophyll proteins (WSCPs) from Lepidium virginicum has been performed using both absorption and fluorescence detection. Well resolved triplet-singlet (T-S) spectra have been obtained and interpreted in terms of electronic interactions among the four chlorophylls (Chls), forming two dimers in the WSCP tetramer. Localization of the triplet state on a single Chl leads to a redistribution of the oscillator strength in the remaining three Chls of the complex. By comparing the spectra with those obtained on a substoichiometric WSCP complex containing only 2 Chls per protein tetramer, we proved…

ChlorophyllMaterials Chemistry2506 Metals and Alloys0301 basic medicineOscillator strength010402 general chemistryPhotochemistryLepidium01 natural sciencesCoatings and Films03 medical and health scienceschemistry.chemical_compoundTetramerMaterials ChemistryPhysical and Theoretical Chemistry; Surfaces Coatings and Films; Materials Chemistry2506 Metals and AlloysPhysical and Theoretical ChemistryTriplet stateNuclear Magnetic Resonance BiomolecularPlant ProteinsChemistryTemperatureWaterChromophorePorphyrinFluorescenceRecombinant Proteins0104 chemical sciencesSurfaces Coatings and FilmsSurfacesPhotoexcitation030104 developmental biologySolubilityChlorophyllThe Journal of Physical Chemistry B
researchProduct

Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures

2016

We report on the comparison between the computational and experimental determination of electronic circular dichroism spectra of different guanine quadruplexes obtained from human telomeric sequences. In particular the difference between parallel, antiparallel, and hybrid structures is evidenced, as well as the induction of transitions between the polymorphs depending on the solution environment. Extensive molecular dynamics simulations (MD) are used to probe the conformational space of the different quadruplexes, and subsequently state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM) techniques coupled with excitonic semiempirical Hamiltonian are used to simulate the macromo…

Materials Chemistry2506 Metals and Alloys0301 basic medicineCircular dichroismSurfaces Coatings and FilmNanotechnologyMolecular Dynamics Simulation010402 general chemistryG-quadruplexAntiparallel (biochemistry)01 natural sciencesMolecular mechanics03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundG-QuadruplexeMaterials ChemistryHumans[CHIM]Chemical SciencesPhysical and Theoretical ChemistrySpectroscopyComputingMilieux_MISCELLANEOUSPhysicsQuantitative Biology::BiomoleculesCircular DichroismDNA0104 chemical sciencesSurfaces Coatings and FilmsG-Quadruplexes030104 developmental biologychemistrySettore CHIM/03 - Chimica Generale E InorganicaChemical physicsNucleic Acid ConformationQuantum TheoryDNAHumanMacromoleculeThe Journal of Physical Chemistry B
researchProduct

Halogen bonding stabilizes a cis-azobenzene derivative in the solid state : A crystallographic study

2017

Crystals oftrans- andcis-isomers of a fluorinated azobenzene derivative have been prepared and characterized by single-crystal X-ray diffraction. The presence of F atoms on the aromatic core of the azobenzene increases the lifetime of the metastablecis-isomer, allowing single crystals of thecis-azobenzene to be grown. Structural analysis on thecis-azobenzene, complemented with density functional theory calculations, highlights the active role of the halogen-bond contact (N...I synthon) in promoting the stabilization of thecis-isomer. The presence of a long aliphatic chain on the azobenzene unit induces a phase segregation that stabilizes the molecular arrangement for both thetrans- andcis-i…

Materials Chemistry2506 Metals and Alloys116 Chemical sciencesCrystal structure010402 general chemistryPhotochemistry01 natural sciencesazobenzene; halogen bonding; isomerization; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics; 2506; Materials Chemistry2506 Metals and Alloysisomerizationchemistry.chemical_compoundPhase (matter)Atomic and Molecular PhysicsMaterials ChemistryElectronicOptical and Magnetic MaterialsHalogen bondta114010405 organic chemistryChemistrySynthonMetals and AlloysAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystallographyazobenzeneAzobenzenehalogen bondingDensity functional theorySettore CHIM/07 - Fondamenti Chimici Delle Tecnologieand Optics2506IsomerizationDerivative (chemistry)
researchProduct

Characterization and properties of PEO coatings on 7075 Al alloy grown in alkaline silicate electrolyte containing KMnO 4 additive

2017

Abstract Plasma electrolytic oxidation (PEO) was used to modify the surface of 7075 Al alloy by applying a bipolar pulsed-current in a silicate based electrolyte containing 0 to 3 g L− 1 KMnO4. For the coating produced in the base electrolyte, crystalline γ-Al2O3 was the main phase, while the coatings formed at the presence of KMnO4 consisted of α-Mn2O3 containing Si and Al oxides. A pancake structure was observed on surface of the coating produced in the base electrolyte, while a foam feature along with some volcano-like areas was detected on the surface of the coatings produced in the presence of KMnO4. The KMnO4 changed the discharge type leading to diminish the pores at the metal/coatin…

Materials Chemistry2506 Metals and AlloysAluminum alloyMaterials scienceAlloyCorrosion resistanceSurfaces Coatings and FilmCondensed Matter Physic02 engineering and technologyElectrolyteengineering.material010402 general chemistry01 natural sciencesCorrosionMetalchemistry.chemical_compoundCoatingManganese oxideMaterials ChemistryPlasma electrolytic oxidationChemistry (all)MetallurgySurfaces and InterfacesGeneral ChemistryPlasma electrolytic oxidation021001 nanoscience & nanotechnologyCondensed Matter PhysicsSilicate0104 chemical sciencesSurfaces Coatings and FilmsSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringvisual_artvisual_art.visual_art_mediumengineeringNyquist plotSurface morphology0210 nano-technologySurfaces and InterfaceSurface and Coatings Technology
researchProduct

The Amorphous Semiconductor Schottky Barrier Approach to Study the Electronic Properties of Anodic Films on Ti

2017

A detailed study of the electronic properties of thin (>20 nm) anodic TiO2 potentiostatically grown on titanium in two different solutions is presented. The results show that the nature of the anodizing solution affects the electronic properties of the anodic film and, more specifically, the density of electronic states (DOS) distribution. Different DOS were derived from the experimental data analyzed according to the theory of amorphous semiconductor (a-SC) Schottky barrier. It is shown that the usual non-linear and frequency dependent Mott-Schottky plots are in agreement with expected theoretical behavior of a-SC Schottky barrier.

Materials Chemistry2506 Metals and AlloysAmorphous semiconductorsMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryElectronic Optical and Magnetic MaterialSchottky barrierSurfaces Coatings and Film02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMetal–semiconductor junction01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAnodeSettore ING-IND/23 - Chimica Fisica ApplicataMaterials ChemistryElectrochemistryOptoelectronics0210 nano-technologybusinessElectronic propertiesJournal of The Electrochemical Society
researchProduct

Pluronic nanoparticles as anti-oxidant carriers for polymers

2016

Abstract The immobilization of anti-oxidant stabilizers for polymers, particularly naturally occurring systems, can be considered a valuable route for preventing their migration, volatilization, thermo-degradation and decomposition at typical high processing temperatures, as well as for enhance their solubility in polymers. In this work, an innovative approach for the immobilization of naturally occurring stabilizer, through the encapsulation in copolymer nanoparticles, is proposed. Pluronic nanoparticles (PNPs), based on PEO-PPO-PEO, (PEO: poly (ethylene oxide); PPO: poly(propylene oxide)), without and with quercetin, Q, have been successfully formulated and the critical micellar condition…

Materials Chemistry2506 Metals and AlloysAnti-oxidant carrierMaterials sciencePEO-PPO-PEO nanoparticlePolymers and PlasticsNanoparticle02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural scienceschemistry.chemical_compoundDynamic light scatteringPolymer chemistryMaterials ChemistryPhoto-oxidationMechanics of MaterialPropylene oxideSolubilitychemistry.chemical_classificationPolymers and PlasticEthylene oxideAnti-oxidant carrier; PEO-PPO-PEO nanoparticles; Photo-oxidation; Condensed Matter Physics; Mechanics of Materials; Polymers and Plastics; Materials Chemistry; 2506; Metals and Alloystechnology industry and agricultureMetals and AlloysPolymerPoloxamer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical scienceschemistryChemical engineeringMechanics of MaterialsPEO-PPO-PEO nanoparticles25060210 nano-technologyEthylene glycol
researchProduct

Polymeric micelles as a new generation of anti-oxidant carriers

2017

A promising strategy to immobilize a natural stabilizer in polymeric films is presented. Par-Ticularly, nevadensin (N, a natural basil flavonoid) molecules have been encapsulated in Pluronic F-127 micelles [F127, a triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] and the obtained nanoparticles have been introduced in poly(ethylene glycol), PEG [otherwise known as poly(ethylene oxide), PEO]. In order to verify the effectiveness of the micelles as anti-oxidant carriers, PEG-based films have been subjected to artificial weathering. The encapsulation of anti-oxidant molecules allows the enhancement of N solubility in PEG, leading to advanced materials with enh…

Materials Chemistry2506 Metals and AlloysAnti-oxidant carrierPhoto-oxidative stabilityPolymers and PlasticsGeneral Chemical EngineeringPoly(ethylene oxide)Nanoparticlemacromolecular substances02 engineering and technology01 natural sciencesMicellechemistry.chemical_compoundAnti-oxidant carriers; Photo-oxidative stability; Poly(ethylene oxide); Polymeric micelles; Chemical Engineering (all); Polymers and Plastics; Materials Chemistry; 2506; Metals and AlloysPolymeric micellePEG ratioCopolymerMaterials ChemistryChemical Engineering (all)Propylene oxidePolymers and PlasticEthylene oxidetechnology industry and agricultureMetals and AlloysPoloxamer021001 nanoscience & nanotechnology010406 physical chemistry0104 chemical scienceschemistryChemical engineeringPolymeric micelles25060210 nano-technologyAnti-oxidant carriersEthylene glycol
researchProduct